2023-24 MATH2048: Honours Linear Algebra II Homework 2

Due: 2023-09-22 (Friday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V and W be vector spaces over the field F, and let V_{1} and W_{1} be subsets of V and W respectively. Consider the direct product $V \times W$.

Prove or disprove: If V_{1} is a subspace of V and W_{1} is a subspace of W, then $V_{1} \times W_{1}$ is a subspace of $V \times W$.

Prove or disprove: If the product set $V_{1} \times W_{1}$ is a subspace of $V \times W$, then V_{1} is a subspace of V and W_{1} is a subspace of W.
2. Let V be a finite dimensional vector space and W be a subspace of V. Define a map $\pi: V \rightarrow V / W$ by $\pi(v)=v+W$ for all $v \in V$. Show that π is a surjective linear transformation and its kernel is W.
3. Let $\left\{v_{i}\right\}_{i \in I}$ be a spanning set of a (maybe infinite-dimensional) vector space V. Prove that there exists a subset $S \subseteq I$ such that $\left\{v_{i}\right\}_{i \in S}$ is a basis of V. (Hint: Use Zorn's lemma to prove a maximal S exists.)
4. (2.1 Q20) Let V and W be vector spaces with subspaces V_{1} and W_{1}, respectively. If $T: V \rightarrow W$ is linear, prove that $T\left(V_{1}\right)$ is a subspace of W and that $\{x \in V: T(x) \in$ $\left.W_{1}\right\}$ is a subspace of V.
5. (2.1 Q13) Let V and W be vector spaces, let $T: V \rightarrow W$ be linear, and let $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be a linearly independent subset of $R(T)$. Prove that if $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is chosen so that $T\left(v_{i}\right)=w_{i}$ for $i=1,2, \ldots, k$, then S is linearly independent.

The following are extra recommended exercises not included in homework..

1. Summarize the concepts met so far. Make a mindmap of the concepts, definitions, examples and theorems.
2. Read Artin Algebra, Second Edition, Section 3.6 (2 pages), or any other paragraphs about direct sums.
3. Let W_{1} be the space of $n \times n$ matrices over \mathbb{R} whose trace is zero. The trace of a square matrix is defined as the sum of its diagonal entries. Find a subspace W_{2} such that $\mathbb{R}^{n \times n}=W_{1} \oplus W_{2}$. (Hint: consider the nature of matrices in W_{1} and what kind of matrices are not in W_{1}.)
4. (2.1 Q16) Let $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ be defined by $T(f(x))=f^{\prime}(x)$. Recall that T is linear. Prove that T is onto, but not one-to-one.
